SETTING THE STAGE

- Reactor physics is a key discipline that is a core element of every nuclear engineering education program.
- New excitement to:
 - improve our knowledge base
 - deepen our focus on fundamental physics
- GOAL: Contribute to practical solutions that will expand the use of nuclear energy to benefit our society

EMERGING AREA = area of increased focus and interest

- Incorporating an expanded view of the world:
 - Fuel cycle physics, not just in-core physics
 - Be conversant and understanding of chemistry, materials, fuel performance, and thermal-hydraulics issues

- Coping with limited and dispersed resources
 - knowledge and information
 - experimental facilities

Coping with limited and dispersed resources

- How can we best (optimally) integrate fundamental, basic experiments and extensive analysis capabilities to provide
 - the teaching, expanding, and refining of knowledge we need for new reactor designs, and
 - the confirmation of our knowledge as required by regulators
- Technically, we now have the ability to both observe and model phenomena at the atom level – is there value in going to this level of detail?
- How can we best use fundamental measurements and extend there applicability?

Looking beyond LWRs

- next generation of commercial reactors
- fission reactors for space exploration

- Needs for improved nuclear data
 - Measurements
 - Covariance data
 - Processing capabilities
- Proliferation concerns must be a major focus

Request to Genie

- could be readily built by industry in 3-4 years;
- would provide efficient and reliable operations and economics;
- would have passive safety features;
- would have the consensus backing of industry, national labs, and government; and
- would be an integral component of a proliferation-resistant, sustainable fuel cycle.